

Lustre on Flash for Modern Workloads

Daniel Landau, System Architect Dr. Dmitry Livshits, CEO

Performance requirements for Al

More details: https://www.depts.ttu.edu/hpcc/events/LUG24/slides/Day2/LUG_2024_Talk_15-Al_Workload_Optimization_with_Lustre.pdf

Al Workloads Requirements for Lustre

Read Operations

Both random and sequential read performance is important (depending on Al models)

Write Operations

Equally important as read speed to minimize checkpoint time and GPU idle time

Storage Type

All Flash (or better, all NVMe) is needed to achieve the performance requirement

Data Integrity

Poor data integrity implementation can limit NVMe performance

xiRAID Classic Architecture

xiRAID is a software RAID made up of a Linux kernel module and a management utility (CLI)

- ✓ Installation by means of .rpm / .deb packages
- ✓ Ready builds for the most popular Linux distributions:
 - ✓ Oracle 8.4, 8.6, 9,
 - ✓ RHEL 7.9, 8, 9.0, 9.1, 9.2, 9.3, 9.4
 - ✓ Ubuntu 20.04, 22.04, 23.04
 - ✓ AlmaLinux 9
 - ✓ RockyLinux 9
 - ✓ Proxmox 7.2
- ✓ Works with local and remote drives. Provides data availability for disaggregated storage environments
- ✓ Exports RAID as a standard Linux block device. No need to modify application stack

FAU - Friedrich-Alexander-Universität Erlangen-Nürnberg

- GPU cluster "Alex": https://doc.nhr.fau.de/clusters/alex/
- This cluster is used for HPC, ML (millions of small files for ML) and AI

Customer challenge

- Ceph as storage solution was installed
- Performance was not sufficient (magnitude of order problems)
- 3-way Ceph replication means significant loss in used capacity
- Alternative solution was needed in short term perspective

FAU – Hardware Storage Setup

7 servers:

- 2x AMD EPYC 7713 64-Core CPU
- 256 GB DDR4-3200
- 1x NVIDIA ConnectX-6 100Gbit/s Ethernet
- 1x NVIDIA ConnectX-6 200Gbit/s HDR InfiniBand
- 24x Intel D7-P5520 7.68TB PCIe4 NVMe
- Each server runs the following RAID config:
 - 2x MDT: xiRAID-1, ss=64k
 - 2x OST: xiRAID-6 (8+2), ss=64k
- Lustre 2.15.5
- AlmaLinux 8.10

FAU: Lustre Cluster Configuration

Lustre has 14 MDTs, 14 OSTs and ~775TB usable capacity

FAU: xiRAID +Lustre PoC Performance Test Results

- Original implementation: CephFS with 3-way replication
- 4 server nodes were migrated to xiRAID+Lustre and compated with CephFS over 3 servers

FAU: Pros of xiRAID + Lustre vs CephFS

Higher throughput

3-4x higher read-write throughput and metadata performance

More capacity

2x more usable capacity:

430TB — Ceph 3-way replica

≈775TB xiRAID + Lustre

InfiniBand RDMA support

FAU: what can be improved?

High Availability for server crash

- The system originally was not designed for Lustre, so it has no HA
- To implement HA, customer should use SBB systems or NVMe-oF EBOF

Disclaimer:

we will address this challenge shortly

Partner's PoC for the upcoming NDA project: best performance with Lustre + xiRAID

Cluster configuration

14 Servers

- AMD EPYC 9334 32-Core
- 384 GB DDR5-4800
- 2x NVIDIA ConnectX-7 NDR400
- 12x Micron 7450 Pro 3.84TB PCle4 NVMe with specs:
 - Sequential:
 - 6800 MB/s 128KB read
 - 4000 MB/s 128KB write
 - Random:
 - 1000K IOPS 4K read
 - 180K IOPS 4K write

Each server runs the following RAID config:

- 1x MDT: xiRAID-1, ss=16k
- 1x OST: xiRAID-6 (8+2p), ss=64k

In total, Lustre has 14 MDTs, 14 OSTs and ~388TB usable capacity

10 Clients:

- AMD EPYC 9334 32-Core
- 384 GB DDR5-4800
- 2x NVIDIA ConnectX-7 NDR400

Cluster configuration

Theoretical performance

Read:

number of servers x number of OST drives x drive performance

 $14 \times 10 \times 6700 \text{ MB/s} =$

916 GB/s

Write:

number of servers x number of OST data drives x drive performance

 $14 \times 8 \times 3850 \text{ MB/s} =$

431 GB/s

IO500 results: 3rd fastest Lustre based system in the 10 Node research category

```
IO500 version io500-isc24 v3 (standard)
[RESULT]
              ior-easy-write
                                  328.653087 GiB/s : time 442.976 seconds
           mdtest-easy-write
                                  658.996777 kIOPS : time 333.860 seconds
[RESULT]
                   timestamp
                                    0.000000 kIOPS : time 0.000 seconds
              ior-hard-write
                                    7.751412 GiB/s : time 442.857 seconds
[RESULT]
           mdtest-hard-write
                                   60.926374 kIOPS: time 310.050 seconds
[RESULT]
[RESULT]
                        find
                                18084.218841 kIOPS : time 13.167 seconds
[RESULT]
               ior-easy-read
                                  592.703319 GiB/s : time 245.650 seconds
                                 2671.510444 kIOPS : time 83.093 seconds
[RESULT]
            mdtest-easy-stat
                                   31.345065 GiB/s : time 109.503 seconds
[RESULT]
               ior-hard-read
                                 2476.267432 kIOPS : time 8.599 seconds
[RESULT]
            mdtest-hard-stat
                                  458.735704 kIOPS : time 479.526 seconds
[RESULT] mdtest-easy-delete
            mdtest-hard-read
                                  671.807887 kIOPS : time 29.004 seconds
[RESULT]
[RESULT] mdtest-hard-delete
                                  60.347770 kIOPS: time 312.913 seconds
[SCORE] Bandwidth 82.943292 GiB/s: IOPS 739.394914 kiops:
TOTAL 247.644601
```

Elbencho results

```
# ./bin/elbencho --hosts $(cat hosts) -t 28 -w -r -b 64M -s 200g --direct --
iodepth 64 /mnt/elbencho/testfile{01..280}
OPERATION
        RESULT TYPE
                   FIRST DONE LAST DONE
         Elapsed time : 2m36.535s 2m46.715s
WRITE
          IOPS
                               5443
                                         5374
          Throughput MiB/s: 348414
                                       343963
          Total MiB : 54539264 57344000
         Elapsed time : 58.640s 1m45.093s
READ
                            12699
                                        8525
          IOPS
          Throughput MiB/s : 812748 545648
          Total MiB : 47660096 57344000
```

Elbencho results: comparison with theoretical maximum

Performance Test Results, GB/s:

xiRAID High Availability Architecture

- Lustre HA approach is based on Pacemaker clustering
- xiRAID Classic 4.1 includes
 Pacemaker agent for an HA cluster integration
- Shared RAID drives required
- Dual-node clusters are supported
- Multi-node cluster support planned
- Target system architectures:
 - SBB systems with dual-ported drives
 - EBOF connected to the cluster nodes

Disaggregated Lustre Solution with xiRAID Classic on WD Data24

- A high-performance, scalable storage cluster
- Offers large-scale storage with robust failover capabilities and high throughput
- A solution brief is available

xiRAID High Availability Architecture: SBBs as Lustre Building Blocks

Our article: Building a High-Performance, Highly Available Lustre Solution with xiRAID Classic 4.1 on a Dual-Node System with Shared NVMe Drives

Prove it yourself: https://xinnor.io/

Xinnor Lustre Solution for Cloud Environments

xiRAID Opus (Optimized Performance in User Space)

Engine designed for highperformance storage data paths in virtualized environments.

- Creation of RAID-protected volumes.
- 2. Provisioning of volumes to VMs.
- 3. Performance Enhancements:
 - Polling: Reduces latency by actively checking for I/O completions.
 - Zero-Copy: Eliminates unnecessary data copying, increasing throughput.

	Measured single drive performance	2x RAID5 theoretical performance	xiRAID 2x RAID5 performance	Efficiency
4K Random Read (M IOPS)	2,7	65	65	100%
4K Random Write (M IOPS)	0,7	8	8	100%
Sequential Read (GB/s)	14	336	310	92%
Sequential Write (GB/s)	6,75	149	144	97%

xiRAID demonstrates world-record performance with 24 Kioxia CM7 PCIe 5 NVMe SSD drives

xiRAID Opus Architecture

Lustre in Cloud Environments

- Lustre is a well–known FS that is primarily used for HPC workloads
- Provides good scalability and performance for data intensive workloads
- Provides HA over shared storage

Testing Environment Details

CPU: 64-Core Processor per

node (AMD 7702P)

Memory: 256 GB RAM per

Node

Networking: 1 x MT28908

Family [ConnectX-6] per node

Drives: 24x KIOXIA CM6-R

3.84TB (Gen 4)

Aggregated drive performance for each node:

- 9M IOps 4k RR
- 3M IOps 4k RW
- 70 GBps 128k SW, SR

Lustre Solution Performance

Sequential read 1M, 32 jobs:

with xiRAD Opus: 44 GB/s

Sequential write 1M, 32 jobs:

• with xiRAD Opus: 43 GB/s

These results can be achieved with multithreaded vhost-user-blk only!

Reducing complexity of Lustre administration

- Virtiofs allows to share mounted FS on the host with VMs
- No client software or specialized networking configuration needed

Virtio FS Upsides = simplicity

We can hide all the complexity of parallel file system setup from the client behind VIRTIOFS!

Tuned Virtio FS = performance results

Sequential read 1M, 32 jobs:

- Native Lustre client: 44 GB/s
- Virtio FS: 9 GB/s
- Tuned Virtio FS: 44 GB/s

Sequential write 1M, 32 jobs:

- Native Lustre client: 43 GB/s
- Virtio FS: 7 GB/s
- Tuned Virtio FS: 44 GB/s

Outcomes = Xinnor Lustre Solution can perform in Cloud

1. Performance:

- Even with only two virtualized OSS Lustre delivers strong results for sequential and random I/O operations (AIO).
- It is essential to have high-performance block devices passed through to the OSS and MDS virtual machines.
- xiRAID Opus solves this challenge.

2. Skill requirements:

- Requires a high level of expertise to configure the system and client VMs.
- VirtioFS can reduce complexity:
 - For use-cases that require only sequential workload patterns.

3. Xinnor can deliver Lustre solution for Cloud Environments.

Reach out to Xinnor for a POC.