

CSCS site report

LAD 2024, Paris Marco Passerini, CSCS

CSCS, the Swiss National Supercomputing Centre

- Founded in 1991
- "We develop and operate a High Performance Computing and data research infrastructure that supports world-class science in Switzerland."
- 141 employees
 - ~100 in Lugano
 - ~40 in Zurich
 - 22 nationalities

Alps technology in a nutshell

- Science as a Service concept with innovative resource access
- Architectural concept: network end points for resources
- Versatile software-defined Cluster (vCluster) technology
 - Convergence Cloud and HPC
- Heterogeneous infrastructure (Nvidia GPU, AMD GPU, x86, ARM,...)
- Managed by a micro service architecture control plane (CSM/OpenCHAMI)
- Slingshot network: performance and zone segregation
- Distributed Alps (multiple geo-distributed infrastructure)
- Multitenant infrastructure

Alps Research Infrastructure

- Alps is an **HPE Cray EX** supercomputer being our new flagship infrastructure
 - Multi-phase installation started in 2020
- Specs:
 - 2688 Grace-Hopper nodes
 - ~10752 GPUs
 - 1024 AMD Rome-7742 nodes 256/512GB
 - 144 Nvidia A100 GPU nodes
 - 24 AMD MI250x GPU nodes (LUMI1 type)
 - 128 AMD MI300A GPU nodes
 - Slingshot network (200 Gbps injection)
 - (GH nodes have 4 NICs)
 - Two availability zones (HA, non-HA)
 - 100% liquid cooled
 - ~10 MW (envelope for power and cooling)
- Performance
 - ~353 PF/s Rpeak (Top500 #6, 06/2024)

Water cooled blades

Storage technologies

- Lustre
- HPE DMF, ZWS
- Spectra Tfinity, IBM TS4500
- Spectra Blackpearl
- Vast
- CEPH
- DCache
- Globus online
- Spectrum Scale
- Spectrum protect

VClusters and tenants

Lustre systems (1/3)

Capstor

- HPE ClusterStor E1000D
- 129 PiB raw GridRAID
- 8480 **HDDs** (16 TB)
 - 80 disk enclosures
- 11 racks
- 6 MDS, 80 OSS
- Slingshot 11
- Performance:
 - ~1.09 TB/s write, 1.19 TB/s read
 - (ARM different page size! > tunings)
 - 1.5M IOPS
 - 373K file creates/sec
- Neo 6.6-010, lustre 2.15

lopsstor

- HPE ClusterStor E1000F
- **7.2 PiB** raw RAID 10
- 240 **NVMe** devices (30TB each)
- 1 rack
- 2 MDS, 20 OSS
- Slingshot 11
- Performance:
 - 393 GB/s Write | 782 GB/s Read
 - 24M write, 8.6M read IOPS
 - 214K file creates/sec

Lustre systems (2/3)

- Mchstor1, Mchstor2, Mchstor3
 - Each:
 - HPE ClusterStor E1000D
 - 2 MDS, 2 OSS
 - ~1.2PB raw (6TB HDDs) GridRAID
 - Performance
 - 21 GB/s write
 - 26 GB/s read
 - 150K file creates/sec

Psistor

- HPE ClusterStor E1000D/F
- 2 MDS, 12 OSS
- ~9.2 PB
 - ~300 TB SSD raw RAID10
 - ~13.5 PB HDD raw GridRAID
- Performance:
 - HDD 120 GB/s write 110 GB/s read
 - SSD 47 GB/s write, 120 GB/s read
 - 4.6M write, 1,6M read IOPS

Lustre systems (3/3)

Cubestor

- HPE Clusterstor E1000D
- 2 MDS, 2 OSS
- ~2PB raw GridRAID
- 16 TB HDD drives

DDN ES200NV

- 2 MDS, 2 OSS
- ~80TB SSD

Bret

- HPE Clusterstor L300
- 2MDS, 2 OSS
- ~224TB HDD

Currently decommissioning:

- Snx3000 (Piz Daint storage)
- Snx3000tds
- snxarolla
- snxtsa
- DDN ES7K

HPE DMF

- Use cases:
 - Backups of /users and /store
 - HSM for /archive
 - Scratch cleanup scripts
- **Architecture**
 - Servers:
 - 1x management node
 - 5x DB nodes
 - 2x datamovers for tape
 - 2x datamovers for ZWS
 - Storage:
 - Spectra Tfinity
 - ~40 PB
 - 2230x LTO9 tapes 18TB
 - 20 drives assigned
 - ZWS
 - 3.4 PB, 212x 16TB HDD

User environment

- Automatic **folder creation** and quota assignments using Waldur and internal accounting system
- Folder structures for "multitenancy"
 - /fs_name/function/tentant/(customer)/user_or_project
- Load distribution:
 - 2x MDS for /users and /store
 - 4x MDS for /scratch
 - DNE1 with round robin assignments of folders (alphanumeric)
- **ACLs**
 - Let user-support team access user files, preserving UID/GID for users
- Project quotas soft/hard
 - Custom scripts and DB to manage them
 - Grace time
- Changelogs enabled for DMF
- **Cleanup policies**
 - Custom scripts based on DMF DB
- Metadata bottlenecks
 - Compilation on Tempfs
 - Squashfs

Lustre multitenancy

- What we evaluated:
 - Multiple VLANs on same storage (POC with DDN)
 - Limitations in maximum amount of VLANs (32)
 - Patch to dynamically adding VLANs
 - QOS
 - Dedicated MDTs
 - Can be restricted to root
 - OST pools
 - Users with normal permissions can override
 - Authentication
 - Tenants with their own LDAP
 - Identities must be replicated to the Lustre backend, UID/GID remapping
 - Quotas
 - Anybody with root can change them
- What we implemented:
 - Managed vclusters (tenants don't have root)
 - Subdirectory mounts to volusters
 - Unmanaged vclusters (tenants with root access)
 - Dedicated storage systems, on dedicated VLANs

Lustre network configuration

- TCP/KFI UDSP dual mode
 - Routed outside SS network
 - no dedicated LNET servers
 - **Priorities:**
 - Inetctl udsp add --src kfi --priority 0
 - Inetctl udsp add --src tcp --priority -1
 - Inetctl net show -v 4 | grep -P 'nid|priority'
 - Inetctl net show -v | grep -P 'nid|send_count|recv_count'

Lustre long distance mounts

- Mchstor3, Lausanne, ~300KM distance
 - Over the internet, encrypted
 - 2x 100Gbps links
 - Performance:
 - 16.6 GB/s write
 - 11.4 GB/s read
 - 3.5 ms ping latency
 - MTU size 9000
 - No special tunings
 - Mixed user workload
 - DMF integration also works
- Cubestor, Bologna
 - Work in progress

Monitoring (1/3)

- Nagios, Grafana
- Prometheus exporter (python) > Metricbeat > Kafka > ELK stack
- System stats
 - CPU Load
 - MDT IOPS
 - MDT IOPS/type
 - Bandwidth
 - Bandwidth/OST
 - Write IOPS/OST
 - Read IOPS/OST
 - OST RPCs
 - Capacity
 - Number of files

Monitoring (2/3)

- Lustre job stats
 - lctl get_param *.*.job_stats
 - Python script reads every minute the values through all OSSs, picking the max snapshot time
 - aggregate MD operations
 - aggregate write/reads from each OSS
 - We measure:
 - Job IOPS
 - Job Write Bytes/s
 - Job Read Bytes/s
 - Fine grained selection by
 - Storage system
 - Vcluster
 - User
 - Node
 - Job ID
 - Job name:
 - vcluster jobid
 - vcluster_username_node
 - Set \$LUSTRE_JOB_ID on a profile script

Monitoring (3/3)

Quota reports

Username	∨ Folder	×	Files Used ~	Space Used ~
	- Foldel	•	Files Osed V	Space Oseu •
ammen	/mnt/capstor/scratch/cscs/a		23,448,475	14,346,789,847,040
am	/mnt/capstor/scratch/cscs/amain		23,433,499	14,335,961,202,688
ahı	/mnt/capstor/scratch/cscs/ahage		1,220,832	48,508,946,087,936
ah	/mnt/capstor/scratch/cscs/ahg		1,220,832	48,508,946,087,936
апетс	/mnt/capstor/scratch/cscs/almost		656,235	373,584,166,912

```
# Isattr -p -d /capstor/users/cscs/user_1
2029 -----P- /capstor/users/cscs/user_1
# Ifs quota -p 2029 /capstor/ -h
Disk quotas for prj 2029 (pid 2029):
  Filesystem used quota limit grace files quota
                                                     limit grace
/capstor/ 29.4G 50G 50G - 44 500000 500000
```


Data movement

Internal data transfer

- Xfer Slurm queue
- Dedicated nodes for internal transfers between filesystems
- 4 servers

External data transfer

- Globus
- Gateway to I/O data from outside CSCS to our storage systems
- 3 servers

Future work

- Quotas
 - Notifications for users
- QOS
 - Lustre NRS TBF
- VAST for /users
 - Snapshots
 - Metadata performance
 - Multitenancy built in
- Blackpearl S3
- **NVMEoF**
- FirecREST for data movement

Thank you for your attention.